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ABSTRACT 

An analysis of the relation of the total number of turns on a torus to the length of 
winding is presented for two models. One model is based on the assumption of circular 
turns; the other assumes close-packed windings. Results are presented for ratios of 
major to minor radii of the torus of 1.25 to 10 and for fractional filling of the winding 
window from 0 to 1.0. The curves presented enable the winding length for a particular 
number of turns to be easily determined. 
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LENGTH OF WINDING ON A TORUS IN TWO IDEAL MODELS 

by Jan is  M. Niedra 

Lewis Research Center  

SUMMARY 

An analysis of the relation of the total number of turns on a torus to the length of 
winding is presented for two models. One model is based on the assumption of circular 
turns, the other assumes close-packed windings. Results are presented for ratios of 
major to minor radii of the torus of 1.25 to 10 and for fractional filling of the winding 
window from 0 to 1.0 .  The curves presented enable the winding length for a particular 
number of turns to be easily determined. 

lNTRO DUCTION 

Design of electrical coils, such as might be used in some transformers or inductors, 
presents the problem of relating the total length of wire to the number of turns wound on 
the core. For the straight circular cylinder, and to a lesser extent for a rectangular 
cylinder, a single solution of a good approximation can be obtained. When the base core 
is a torus, additional considerations enter into the calculations because the base surface 
is now curved in two dimensions. The latter problem can be solved by using two differ- 
ent assumptions about the packing of the turns. 

The first case is that of circular turns centered around the core cross section. In- 
sulation between layers supports the turns, which are adjacent at the window surface of 
the torus but spaced apart on the outer periphery. The second case considered is that of 
close packing of windings, where the turns at the window surface are crowded on top of 
each other but allowed to sink between turns on the outer periphery. Both cases are ex- 
amined for a variety of shapes of the torus defined by a minor radius a and a major 
radius b. The ratio b/a is varied, and the effect on the mean length of turn is deter- 
mined. The mean length of turn is defined as the total length of winding L divided by 
the total number of turns N. 



GENERAL FORMULATION 

A sketch of the torus with minor radius a and major radius b is shown in figure 1. 
Two systems of plane polar coordinates are introduced. One system (p, 8) is centered in 
the plane of the window, and the other system (r, q) is centered in  the circular cross 
section. In general, the problem is to seek functions f which give the length of each 
turn and whose sum over all turns is the total length. It is always assumed that the 
winding is distributed uniformly in the 8 direction, so that f depends only on p. 
There is, thus, no loss of generality in making the winding occupy the whole range 
0 5 8 5 27r. If a! is the area of the window taken up by each turn and is assumed to be 
a constant, then the total length is 

where po is the radius of the unfilled part of the window, if any. (All symbols are  de- 
fined in appendix A. ) The discreet summation has been replaced by an integral under 
the assumption that the wire  is sufficiently fine to permit this. 

From this formulation it is immediately apparent that L can be groportional to the 
total number of turns N only if po is kept fixed as N is varied, which in turn implies 
that for any given N the a! has to be chosen to satisfy 

N = - ( b -  a) “c a! 

WINDINGS WITH CIRCULAR TURNS 

In this case the problem is solved by assuming that all the turns are circles centered 
about the origin of the coordinate system (r, q). Each turn is thus assumed essentially 
to close on itself and have the length 

giving a total length of 

L = -  2T2[(b - a)2(b + 2a) - p33b - 2p0( 
3a! 
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or 

L = "{z baN - 2(b - a)3 + 2 
3 a  B 

This circular-turns case corresponds to the physical situation where successive 
layers of wire are  spaced apart by a constant thickness of insulation. The wires in the 
window are, in each layer, as close to each other as insulation permits but have open 
spaces betweQn them on the outer periphery. Therefore, the density of packing of the 
wires varies with rp in this case. Finally, the particularly simple formula 

L = (b + 2a)N 
3 

holds for a completely filled window. 

WINDINGS WlTH CONSTANT DENSITY OF TURNS 

In a somewhat different approximation, assume that there are  on the average an 
equal number of wires per unit area everywhere in the winding, Such a situation might 
arise if  layer is wound on top of layer without any additional insulation except for that 
covering the wire. The turns then tend to crowd on top of each other in the window and 
sink between each other on the outer periphery. The very first layer has circular turns, 
but with increasing depth of winding the turns distort into some oval shape. Again, func- 
tions f are sought which give the length of each turn. 

in depth; by symmetry, it is sufficient to deal with only half turns. Each turn is iden- 
tified by its intercept z with the plane of the window, and the equation for a turn then is 
of the form r = r(q, z) (note that z = r(0, z)). At the point (r, rp) the distance between 
wires  separated in z by the distance dz is denoted by dn. Since the turns are not 
circles, the radius vector subtends an angle E with the normal to the curve represent- 
ing the wire. By the "differential construction" in figure 2, it follows that 

Figure 2 shows two representative noncircular turns separated by a small distance 

a r  
az 

dn = - dZ COS E 

and further, from the elements of polar coordinates, 
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- 1 - r cos E = 
1 D 

If p now is the average area occupied per wire, then the element (b - z)dz de of window 
area must contain p-'(b - z)dz d8 wires since the wires intercept the plane of the win- 
dow at right angles. This group of wires occupies the same cross-sectional area dA at 
each angle cp, although dA becomes thinner and wider as cp increases from 0 to T. 

The areabounded by the planes 8 and 8 +  de and bythe wires z and z i- dz is, at 
any cp, 

dA = (b - r cos q)d8 dn 

which must equal the area (b - z)dz de. aua t ing  these expressions and making the ob- 
vious cancellations and substitutions result in the partial differential equation 

for the function r(cp, z). It is subject to the condition r(cp, a) = a, its variables being 
limited to a I z 5 b, 0 5 cp 5 T. This equation is nonlinear and does not appear to have 
a simple solution which satisfies this boundary condition. 

Once r(q,  z) has been determined L can be obtained by first writing down the arc 
length f for a single turn and then summing over the turns or, alternatively, by calcu- 
lating the total volume of the winding V and dividing by p because V = Lp. The first 
method does require a substitution from the differential equation and proceeds as follows: 

Let Z be the maximum value of z (i. e., for the outermost layer of the winding). 
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L =LJ2'4'(b - z)f dz de =-  2T / Z ( b  - z)f dz 
P O  P a  

_ -  - 4T f 'IT (b - r cos q)(*)r dq dz 
az 

a 0 
P 

An approximate solution, which gives an exact value for r( T, z), can be derived by 
integrating the differential equation at constant q. 

or  upon integration of the left side 

If it is true that the angle E remains small, then the quantity under the square-root sign 
can be approximated by 1, and the integration can be carried out to arrive at the approx- 
imate solution 

{(b - a cos q) a)21co8 q> 1/2 P +E 
2 

r - (  I. + $[(b - a)2 - (b - z ) ~ ]  q = -  T 

2 
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Clearly, even the approximate solution is sufficiently complicated to require numerical 
methods to evaluate the integral for L. 

CALCULATION OF L FOR CONSTANT-DENS ITY-OF-TURNS WINDING 

A direct accurate solution for the partial differential equation is obtained by applying 
a technique of successive numerical approximations to the equation in the integral form. 
The first steps in the process are to increment z from z = a by a small amount dz, 
assume ar/acp = 0, and find values of r for a set of some 100 points (qn, a + dz). The 
values of P thereby obtained are used to estimate ar/acp at these points, and the proc- 
ess is repeated until convergence is obtained. After that, z is incremented further to 
z + 2dz and the process is repeated, generating a family of solutions. These solutions 
then were used to find L and compared with the approximate solution. A few curves 
are presented in figure 3. 

The results are  presented in terms of the winding volume instead of length, the two 
being related by V = Lp. Values of winding volumes are calculated for unit volume tori 
of b/a ranging from 1.25 to 10, which permits easy scaling of the winding volume to 
tori of other sizes. In figure 4 the volume of winding divided by the volume of the torus 
is plotted against the fraction of the window area filled, using the exact solutions. 

DISCUSSION OF RESULTS 

The curves in figure 4 are based on a direct numerical ,solution of the differential 
equation; however, the difference between the exact and approximate solutions is at most 
only a few percent, and often only a fraction of a percent. 

When plotted linearly, the volume V against the fraction of window filled W are 
smooth curves, concave upward because of the increasing contribution per turn as W 
approaches 1. To find L from the curves of V(W) divide by p. 

where W = NP/[lr(b - a)2]. The use of the curves of figure 4 to find the length of wind- 
ing on a torus of arbitrary volume and shape is illustrated by a sample calculation in 
appendix B. 

It is of interest now to compare the length of wire for the constant-density case, 
which produces a minimum-length winding, with the length found in the circular-turns 
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case. The difference will be maximum whenever the window area is completely filled. 
The circular-turns case then has a mean length of turn 

and the constant-density case gives an 

As expected, for small b/a the two types of windings have only a small difference in 
length, which increases quite rapidly as b/a exceeds 1. By inspection of figure 5, 

(L/N)min starts at 1 and then gradually increases to about 1.25 at b/a = 10. 
which compares the two cases quantitatively, it is evident that the ratio of (L/Wcirc to 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, July 8, 1968, 
120-27-04-22. 
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APPENDIX A 

SYMBOLS 

a 

b 

f 

L 

N 

n 

r 

v 

V 

W 

Z 

minor radius of torus 

major radius of torus 

length of one turn of winding 

total length of winding 

total number of turns 

distance normal to turn of wire 

radial coordinate 

volume of winding for constant- 
density-of -turns model 

2 2  volume of torus, 2 ~ r  ba 

fraction of window area occupied 
by winding 

value of z for outermost layer 
of winding 

Z 

a 

P 

E 

e 

P 

PO 

(P 

defined by z = rqz0 for any given 

area of window occupied by one turn 
of wire in circular-turns case 

turn of wire 

area occupied by one wire in 
constant-density- of -turns case 

angle subtended by radius r and 
normal n 

angular coordinate 

radial coordinate 

radius of unfilled part of window in 
circular-turns case 

angular coordinate 
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APPENDIX B 

USE OF CURVES OF FIGURE 4 TO FIND LENGTH OF WINDING 

Suppose a given torus with the dimensions a = 2 centimeters and b = 6 centimeters 
is to be wound with N = 1000 turns of wire having an effective cross section p of 
0.04 square centimeter. The volume of this torus is 

v = 2a2ba2 = 473 cm 3 

The fraction W of the window area filled by this winding is 

= 0.796 = Np = 103x4x10'2 

a(b - a)2 746 - 2)2 

The ratio of the volume V(W) of winding to 2n2ba2 can now be read from the curve for 
b/a = 3 (fig. 4). 

which gives the volume of winding V = 662 cubic centimeters. The length L of the 
wire follows from 

3 1 

P 0.04 cm2 
662 cm = 166 meters L = - V(W) = 
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Figure 1. - Cross section of core showing origins o f  two coordinate systems. 

I ,- rW, z + dz) 

Figure 2. -Two closely spaced tu rns  and differential construction for 
uniform-density winding on torus. (Because of symmetry only half of 
each turn is  shown.) 
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Figure 3. - Shape of constant-density winding on torus, 
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Ratio of major 
radius of torus to 

minor radius, 
bla 

Fraction of window filled, W 

Figure 4. -Volume of winding divided by volume of torus 
as function of fraction of window fi l led for constant- 
density windings. 
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Figure 5. - Mean length of turn for unit volume tori having completely filled windows as function of 
ratio bla. 

NASA-Langley, 1968 - l$ E-4554 13 




